BRL

AD

TECHNICAL LIBRARY

MEMORANDUM REPORT ARBRL-MR-02804

INITIAL FIRING TEST RESULTS OF THE 35MM SCALED MODEL OF THE 105MM M68 TANK GUN

George Samos Bertram B. Grollman Jimmy Q. Schmidt

January 1978

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

USA ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
USA BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT ARBRL-MR-02804	
. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Initial Firing Test Results of the 35mm Scaled	BRL Memorandum Report
Model of the 105mm M68 Tank Gun	6. PERFORMING ORG. REPORT NUMBER
· AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(#)
George Samos	
Bertram B. Grollman	
Jimmy Q. Schmidt PERFORMING ORGANIZATION NAME AND ADDRESS	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Ballistic Research Laboratory (ATTN: DRDAR-BLP)	AREA & WORK UNIT NUMBERS
Aberdeen Proving Ground, MD 21005	1L662603AH78
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Armament Research & Development Command US Army Ballistic Research Laboratory	JANUARY 1978
(ATTN: DRDAR-BL)	13. NUMBER OF PAGES
(ATTN: DRDAR-BL) Aberdeen Proving Ground, MD 21005 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	25
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	5) 15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
5. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimi-	ted.
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
	•
8. SUPPLEMENTARY NOTES	
KEY WORDS (Continue on reverse side if necessary and identify by block number	per)
nterior Ballistic Studies	
allistic Scaling Laws	
copellant Charge Design	
operimental Pressure and Velocity Data	
ABSTRACT (Continue on reverse side if necessary and identify by block number	ral/2411
The initial firing test results of the 35mm	

The initial firing test results of the 35mm scaled model of the 105mm M68 tank gun are presented and compared with the calculated performance for three different web propellants. The data include the muzzle velocities and chamber pressures for charge weights varying from 50% to 100% of the charge weight required for the scaled model of the M392A2 APDS round.

TABLE OF CONTENTS

	Pa	age
	LIST OF ILLUSTRATIONS	5
	LIST OF TABLES	7
I.	INTRODUCTION	9
II.	DISCUSSION	9
III.	EXPERIMENTAL	12
IV.	SUMMARY	15
	APPENDIX A - PROPELLANT DESCRIPTION SHEETS	19
	DISTRIBUTION LIST	23

LIST OF ILLUSTRATIONS

Figur	e	Page
1.	35mm Gun	10
2.	Base Gage Installation	11
3.	Wear-Reducing Additive	11
4.	Slug Projectile	14
5.	Pressure vs. Time Curves	16
6.	Displacement and Velocity vs. Time Curves	17

LIST OF TABLES

Table		Page
I.	Dimensions of Propellant Grains as Ordered	.12
II.	Dimensions of Propellant Grains as Received	.12
III.	Experimental Results	.13
IV.	Calculated Ballistic Performance for Ordered Propellant	.14
٧.	Calculated Ballistic Performance for Received Propellant	.14
VI.	Experimental Ballistic Performance	.15
VII.	Interferometer Data	. 18

I. INTRODUCTION

On the basis of a theoretical study into replica modeling theory, I a 35mm gun, which represents a scaled 105mm, M68 tank gun, was designed and fabricated. The purpose of the theoretical study was to investigate the basic dynamics, compressible fluid mechanics and solid mechanics to establish replica modeling behavior. The theoretical study showed that similarity exists for replica models in the transitional ballistics region for sabots provided that the effects of gas viscosity are insignificant and that the Mach number, the materials, the gas status and the ambient conditions are preserved. It was also verified that rate effects in materials upset similarity but that elastic and elastic-plastic material behavior are amenable to similarity under linear geometric scaling provided surface tractions are preserved and acceleration effects are scaled. An examination of the first-order interior ballistic equations also showed similarity for linear geometric scaling. If agreement is found between the firing test data and the modeling theory, then results of other phases of this program may be scaled with confidence.

This report presents results from the first phase of the experimental study, interior ballistics.

II. DISCUSSION

The weapon was set up, instrumented, and test-fired to establish charges and to evaluate three propellant lots obtained from Radford Army Ammunition Plant.

The gun, manufactured by Watervliet Arsenal, is shown in Figure 1. Two BRL Minihat Gages were installed diametrically opposite each other 0.104 metre from the rear face of the tube. A third Minihat Gage was installed in the base of the stub cartridge case, shown in Figure 2. The stub cases were cut down from standard 40mm M25 cases. M1B1A1 percussion primers were used to ignite the M30 propellant. A liner of titanium dioxide/wax additive, shown in Figure 3, was used to mimic the wear-reducing additive used in the M392A2 round, as well as to contain the propellant which did not totally fit in the stub case. The upper part of the lid on top of the liner was slit into flaps which were folded over to enclose the propellant.

The seven perforation 0.0456-inch web M30 propellant for the 105mm gun was selected for the modeling study. The propellant grain has a length (L) of 0.627 inch, a diameter (D) of 0.261 inch and perforation diameter (d) of 0.0261 inch. Its L/D is 2.4 and its D/d is 10. Maintaining this L/D and D/d, a one-third diameter scaled lot of propellant was ordered from Radford. Two additional lots with webs of ± 0.020 inch

 $^{^{} extstyle 1}$ Dr. B. Burns, R. Deas, unpublished report.

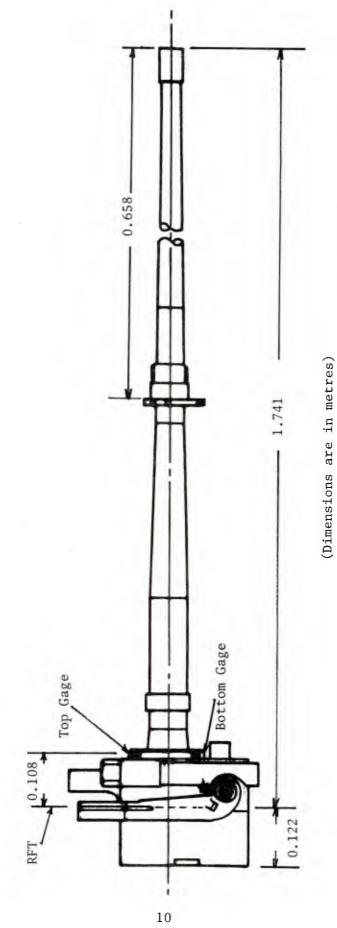


Figure 1. 35mm Gun

Figure 2. Base Gage Installation

Figure 3. Wear-Reducing Additive

were also ordered. Table I presents the dimensional characteristics of the standard propellant as well as those specified for the scaled propellant when ordered. Propellant Description Sheets are included in Appendix A.

TABLE I. Dimensions of Propellant Grains as Ordered

	W	L	D	d Diameter	of
	Web	Length	Diameter	Perforati	
	in.	in.	in.	in.	
1.	.0456	.627	.261	.0261	(Standard)
2.	.0132	.182	.076	.0076	
3.	.0152	.209	.087	.0087	
4.	.0172	.236	.098	.0098	

Table II presents the dimensional characteristics of the scaled propellant actually received from Radford. These should be compared with items 2, 3 and 4 of Table I.

TABLE II. Dimensions of Propellant Grains as Received

Lot #	W _{Av} .	Wi	Wo	L	D	d	L/D	D/d
	in.		in.					
E29	.0128	.0073	.0183	.1798	.0810	.0105	2.22	7.7
E30	.0147	.0096	.0198	.2065	.0943	.0123	2.19	7.6
E31	.0156	.0091	.0220	.2321	.1048	.0147	2.21	7.1

W; = inner web

W = outer web

III. EXPERIMENTAL

The firing test program was conducted with 0.46 pound (209 g) slug projectiles shown in Figure 4. Pressure gage outputs and timing signals were recorded on a Honeywell magnetic tape recorder. A 35 GHz interferometer was used to measure projectile displacement and velocity in the tube. Its output was also recorded on tape. Lumiline screens placed known distances downrange were used to obtain muzzle velocity for the higher charge firings by extrapolating the data back to the muzzle. Velocities for all of the rounds were obtained from the interferometer discriminator. Table III presents the pressure and velocity data obtained.

TABLE III. Experimental Results

Round #	Weight of Propellant (g)			Pr	essure l	MPa	Muzzle Velocity, m/s			
	Lot E29	Lot E30	Lot E31	P _c	* P _t	P _b	Disc.	Screen		
1			100	86	97	89	777			
2			125	128	142	139	934			
3			150	171	197	190	1078			
4			175	228	257	268	1161			
5			200	321	364	357	1314			
6		100		86	111	108	781			
7		125		120	151	150	914			
8		150		190	225	220	1098			
9		175		232	281	272	NG			
10		190		265	317	317	1319			
11	100			97	108	97	788			
12	125			129	154	148	905			
13	150			201	216	212	1048			
14	175			270	306	274	NG			
15	190			332	349	338	NG			
16	195			360	378	370	1314			
17	200			374	390	386	1424			
18	200			372	385	387	1384			
19	200			331	364	357	1338			
20	200			370	394	386	1399	1379		
21	205			356	430	406	1302	1443		
22	203			336	378	373	1350	1400		
23	203			, NG	404	395	1133	1423		
24	203			402	364	383	NG	1390		
25	203·			399	384	385	1397	NG		
26		205		386	374	379	NG	1439		
27		205		398	382	388	NG	1426		
28		203		394	396	397	1400	1431		
29			205	373	372	401	1390	1375		
30			205	391	368	376	1358	1389		
31			205	363	359	365	1397	1387		

P_c = Cartridge Case Gage

 $P_t = Top Chamber Gage$

 P_b = Bottom Chamber Gage

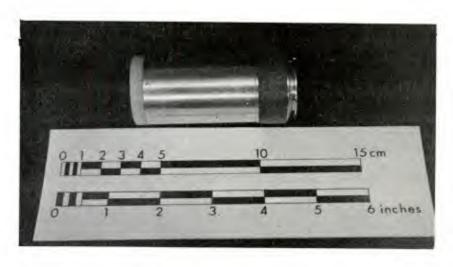


Figure 4. Slug Projectile

The three propellant lots, at the various charge levels, acted as if the webs were larger than they actually were. For the full charge (205 g), Lot E29 with the smallest web had measured pressure and velocity close to that calculated for Lot E30. Table IV presents the calculated pressures and velocities expected from the three propellant lots as ordered.

TABLE IV. Calculated Ballistic Performance for Ordered Propellant

Lot	Pressure	Velocity
	МРа	m/s
E29	498	1543
E30	403	1478
E31	332	1408

Table V presents the pressures and velocities calculated from the propellant data sheets for the three lots as received.

TABLE V. Calculated Ballistic Performance for Received Propellant

Lot	Pressure	<u>Velocity</u>
	MPa	m/s
E29 ·	552	1527
E30	442	1467
E31	400	1416

Table VI presents average pressures and velocities obtained from the three lots during the firing test.

TABLE VI. Experimental Ballistic Performance

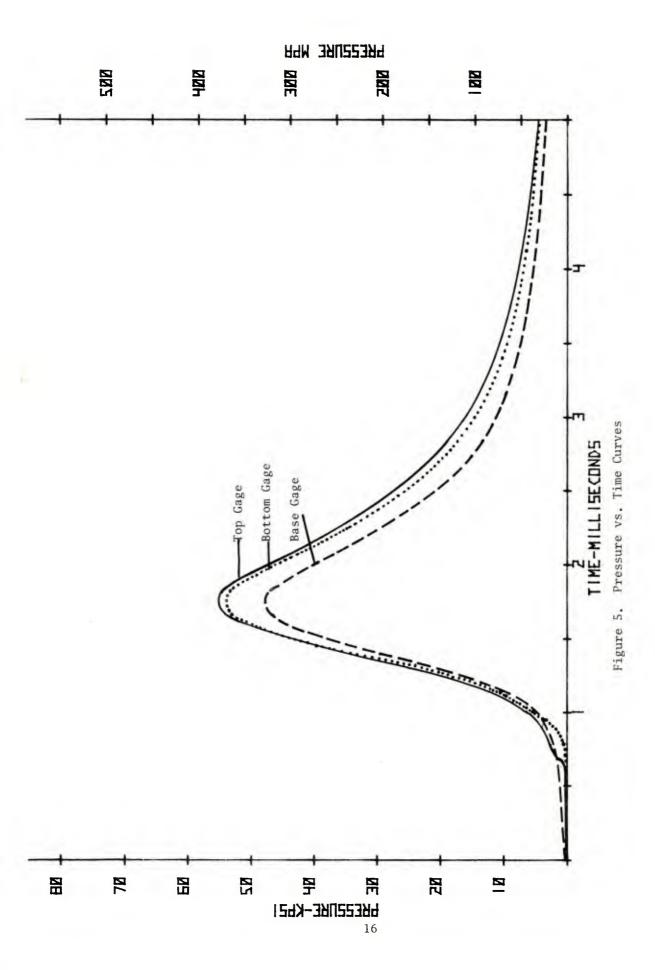

Lot	Pressure	Velocity
	MPa	m/s
E29	418	1443
E30	386	1431
E31	365	1384

Figure 5 presents the pressure vs. time curves of the three pressure gages and Figure 6 presents the displacement and velocity vs. time curves from the interferometer data in Table VII for round 22. Similar data for the other rounds are available and can be reduced and plotted if needed.

IV. SUMMARY

Various charge weights of the three lots of scaled propellant have been fired and a charge established for continuation of this program, using scaled M392A2 projectiles. The best charge of the available propellants, for the M392A2, is 205 grams of Lot E30. Charge can now be calculated for other projectiles scaled for the 35mm gun.

Muzzle velocities reported are not considered accurate because of the poor ballistic shape of the slugs which were fired, necessitating as much as 91 metres/second extrapolation back to the muzzle. In the next experiment, utilizing scaled M392A2 projectiles, the rounds will be fired through the spark range, thereby allowing more accurate muzzle velocities to be obtained. Slight discrepencies noted between the calculated and measured values of pressure might be due to dynamic effects of rotating band and bore resistance in scaling. These will be investigated in later phases of this program.

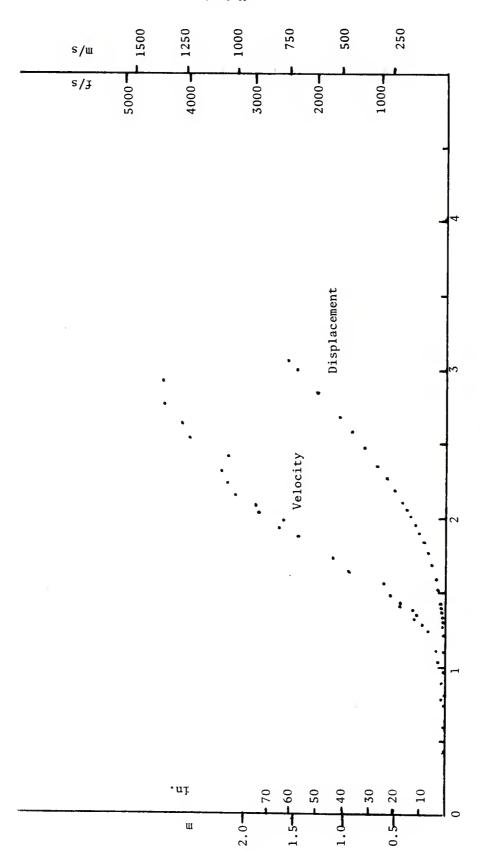


Figure 6. Displacement and Velocity vs. Time Curves

Time, ms

Projectile Displacement

TABLE VII. Interferometer Data

Cycle #	$\frac{\text{Displ}}{\text{in.}}$	lacement	time ms	Veloc f/s	ity m/s	time *
dyc1c "			 111.0		, 3	
0	0	0	0.400			
1/4	0.043	.0011	0.700	12	4	0.550
1/2	0.085	.0022	0.78	44	13	0.740
1	0.17	.0043	0.925	49	15	0.853
2	0.34	.0086	1.065	101	31	0.995
3	0.51	.0130	1.175	129	39	1.070
4	0.64	.0163	1.230	258	79	1.202
5	0.85	.0216	1.270	354	108	1.250
6	1.02	.0259	1.300	472	144	1.285
7	1.19	.0302	1.332	442	135	1.316
8	1.36	.0345	1.360	506	154	1.346
9	1.53	.0389	1.380	708	216	1.370
10	1.70	.0432	1.400	708	216	1.390
15	2.55	.0648	1.482	863	263	1.441
20	3.40	.0864	1.555	970	296	1.519
30	5.10	.1295	1.648	1523	464	1.602
40	6.80	.1727	1.728	1770	539	1.688
50	8.50	.2158	1.800	1968	600	1.764
60	10.2	.2591	1.861	2322	708	1.831
70	11.9	.3022	1.915	2623	799	1.888
80	13.6	.3454	1.970	2576	785	1.943
90	15.3	.3886	2.018	2951	899	1.994
100	17.0	.4318	2.065	3014	919	2.042
120	20.4	.5181	2.150	3333	1016	2.108
140	23.8	.6045	2.232	3455	1053	2.191
160	27.2	.6908	2.312	3592	1095	2.272
190	32.3	.8204	2.435	3455	1053	2.374
220	37.4	.9499	2.540	4047	1233	2.493
250	42.5	1.0794	2.642	4166	1270	2.591
300	51.0	1.2953	2.801	4454	1358	2.722
350	59.5	1.5112	2.959	4483	1366	2.880
370	62.9	1.5976	3.022	4497	1371	2.990
				Velocit	$xy = \frac{x_2}{t_2}$	- x ₁
				time	$=\frac{t_2}{}$	$\frac{+t_1}{2}$

^{*} Time for velocity is midpoint between cycles.

		biiob	FILLAR	JI D		CRI	١٥	ion	(50 1.2)	7	,				
imy Le	RAI				_							Scale	d		
Manufectured	PAA A	D ARMY A	MUNITION	LANT. RA	DEC	PRD. VA.		Posted Amer	int	272	Pour	rds	,		
Contract No.		Ma-VI-C	-0329	_ Dete_D31)-/	Specifical	Hen N	2 Mar	ch 197	s SUN	KO-LI	date	4		
	ACCEPTE	BLEND NUM	arae	NITE	OC	ELLULOS	SE					-		10 111	
	ACCEPTE														
A-35,3	32							Mitrogon Co		i Ster	ch (6,8.8°	C) Stot	disty (134 8°C)	
								Minimum		/.		**		Ming.	
								Averege 12	.54	4.	5+		30+		
										-		Esploy	M	Mong	
	Pounds Saivent	per Poundage/	MA Dry Weight Ingress 10	NUFACTU					40	wads .	Acet	ong.	10 Pa	nds Balvost.	
TEMPERAT	URES F			S-SOLVE	NT	RECOV	ERY	AND DE	RYING		7 7 4		TIL		
77.		Load Fo	rced Air									- 10		Heurs	
Ambient	140	Increas	e Tempera	ture 5°F	P	er Hour	الإسد	TALUE							
140	140		Temperat											24	
												-	_	·	
			TFC1	S OF FIR	ui e	HED DE	OPF	LLANT					•		
PROPE	Constituent	SITION	Percent #	Percent 1 pierence				LLANI	STABLITY	440					
Nitroce	llulose		28.00	±1.30		29.17		C	12000			mule #		Setual	
Nitrogl	ycerin		22.50	±1.00		21.60		No Fumes 60°							
rogu	anidine		47.70	<u>+</u> 1.00		47.42		Form of Propellant Cyld.							
Ethyl C	Centrali	te	1.50	+0.10		1.53		No. of Perforations 7							
Cryolit TOTAL	<u>е</u>		0.30	+0.10		0.28				_					
	olatile	5	0.50	Max.		100.00		 							
Graphit	e Glaze		0.2	Max.		0.09							_		
					_										
				 	\dashv			 				-			
and the second s	CI	OSED BO	วพล			9009511	A SI	T DIMEN	NONE //						
	Lot Numb		15(7)	Heletive Force	L	HOI EEE	-711	DIMEN	210.42 (11	16/16	16)	Moon V	origin	a in %	
Tes!								posification	Die	Pi	make 4	Base	le l	Actypi	
						oth (L)	_		0.1810	0.	1798	5.25Ma	ζ.	1.38	
Standard			100 000	100.00%	Die	neter (D)	 -		0.0870	0	0810	6,25Max	()	4,09	
Remerks			100.00%	199.997		Inner	-	•	0.0140				BATES		
					Wel	Outer			0.0065	0	0183	Period	107	5/73	
					Vel	Avg.			0.0112	O.	0128	Sampled	10/	5/73	
			-	l	No	n.Avg.W	eb	0,0132				Tool Fines	87	17/73	
			-		111	Difference/ Des. in % Map Average		Max.*		86		Olfered	10/	18/73	
					10			0 to 2.50			22	Description	Shee	tu	
					D-e		5.0	to 15*		7.	7		10/	25/73	
Type of Pecki	ng Container	Fiber 1	Drums per	MIL-STD	-6	52B,									
Remerks	*Limits	from M	IL-STD-65	2B W/EO	PA-	-56070-	2 a	nd EO PA	-57189	-2	show	n for			
\	inform	nation of	aly. Pro	pellant	DI	oduced	on	a best	ffort	bas	is i	n			
<u>'</u>	accord	lance Wi	th refere	iced COR		etter.									
						10									
Contractor's	Representative	. /-	- 12			19		Man A							
H. E. B	TSHOP (LAB K	3:11.	10-19-	1	JAMES	E)	BLAND	111		1				

	RAD-					nposition No								<u>d</u>
ismulactured a	RADFOR	O ARM	Y AMM	UNITION P	ANT. RAD	FORD, VA.		COP To	tter Sh	169 nir <i>c</i>	Pour	date	d	
entract No.	UNAE	MAE	11-7-7	1323	Dete 0-30	Specification	on No	2 Marc	h 1973	TOTAL	,-,,	uace.	-	
	ACCEPTE	BL FM	D MUMBEI	8	NITR	CELLULOS	Ε			3				
	70027.12							Nitragen Col	aleat Ki	Stere	h (69.9°C	3 640	olety :	(134 S°C
-35,33	32						_].				Mi	1		M
								dinamum			Me		20.	
							ا ا	Averege 12.	24 * -	4:	5+ m		30+	
				MAI	NUFACTUR	E OF PRO	PEL	LANT				- E 19191	100	
	Pounds Selvent	per Peur	16 hgg/Dry 0	Weight Ingradia	nts Consisting	, <u>60</u> ,	un41	Sicohol and 4	0	me, £	ceto	ne per	00 Pe	unde Salve
TEMPERAT				PROCES!	S-SOLVE	NT RECOVE	ERY	AND DR	YING			- 6	71	Hours
******	7.9	Loa	d Ford	ed Air I	ry at A	mbient Te	mpe	rature						
\mbien		Inc	rease	Temperat	ture 5°F	Per Hour						\Box		
140	140	Hol	d at 7	'emperati	ire									24
														├
														
				TEST	S OF FIN	ISHED PRO	PE	LLANT		-			. : 7-22	
PROPE	LLANT COMPO	SITION	·	Percent #		Percent Messure			STABILITY	AND			1	
itroc	Constituent ellulose			28.00	+1.30	28.48		Meet Test , SP , 120°			No CC	40	60	Actual
	lycerin	·		22.50	±1,00	0 22.81		No Fumes				60		
rog	uanidine			47.70	±1,00	46.90		Form of Proposions				Су	1d.	
	Centrali	te		1.50	+0.10	1.53		No. of	Perfor	ati	ons		7	
Crvoli	te			0.30	+0.10	100.00							-	
TOTAL Total Volatiles 0.50 Max.						0.27	-			-			+	
	te Glaze			0,2	Max.	0.08	3							
													\Box	
													-	
				-						-			-	
	С	LOSE	D BON	1B	-	PROPELL	AN	T DIMEN	SIONS (in	cho	2)		-	
	Lot Numi		Temp *F	Malativa Quicanges	Relative Force							Meen of Is	Verlet	an in %
							-	pecification	Die		rahed		*	
				ļ		Langth (L)	-		0.2070	0	2065	6.25M	ax.	1.74
ndard.	1			100.00%	100.00%	Diameter (D)	 		0.099 <mark>0</mark> 0.0160	0	0122	6.25M		
ndard marks						Web Inne	E	•	0.0205	0.	0096		DATE	
						Web Outer			0.0085	0.	0198			
						Web Avg.		0.05.55	0,0142	0.	0147	Sempled	,	-,
				<u> </u>		Nom. Avg.	veb	0.0152		-		Tost Fini	YV/	17/7
	 			 		Was Difference/ Sid Dev. in % of Wes Average		Max.*		70		Olfered	10/	18/7
						L D		0 to 2.50		2.		Descripti Forwards	en Sh	ish Loc In
						0.4	15.	0 to 15*	i	17.	6		10/	25/7
ype of Pac	king Container_	F:	iber D	rums per	MIL-ST	D-652B.								
I-marks	·	MTT (mn 45	20/50	DA 5607	0-2 and E	0 P	A_57180	2 aha	n é	or 4-	1 f C ==	2+-	00
1011	s from	1120	Drod	uced or	a best	effort ba	sie	in acco	rdance	Ta7 T	th r	efere	nce	d
	letter.		- V - V U	SCOU VII	<u> </u>									
						20								

		1000		LAN	T DE	SCRI	()	1011	SI		,			
US AITT LO	N. RAD-I	E-31		of 11	23c+	position No	N3	0. MP f/l aled	Q5mm	M68.	351rm			
Marufactured (RADFOR	A YMPA	мми	NITION PL	ANT. RAD	FORD. VA		Packed Amous	. 2	91 F	ounds			
Contract No	0aaa	09-71-0	-0	329	0010 6-30	-ZL_ specific	plion i	. COR Let	ter S	MURC	-IE d	ated		
				=======	NITRO	CELLULO	SF	2 March	19/1					
	ACCEPTED	SLEND NUM	ISERS					1					Pr (134 8*	
Λ-35,33	32							Militagen Cor	%	K1 \$10/	en (65.9°C)			Mine
					·			Minumum			Mine			Mins
								Averege 12.	54 %	45	H-		30+	tung
					UICA CTU	E OF PR		11 4317				Espiasion		Mins
	Paunds Selvent	per Paund NCO	EDry W	MAN Ingradier	IUPACIUS	60	Pound	s Alcohol and	40	Pounds .	Aceto	120 per 100	Pevols Se	ivant.
TEMPLRAF	URES F			PROCESS	-SOLVE	NT RECO	VER	Y AND DR	YING			Day	TIME	7.0
Fram	Ţø.							perature					15-17	12.
Ambient	140					Per Ho	ur							
140	140	Hold a	at T	emperat	ure								26	<u> </u>
02005				TEST	OF FIN	ISHED P	ROP	ELLANT	CTARUAT	V AM	PHYSIGA	75474		-
PAUPE	Constituent	SELLION		Pergant &	Percant .	k Perc	nd ired	T	41840511	-		ule *	Artivel	
	ellulose		28	3.00	$\frac{1}{1.30}$	28.3		Hegt Test , S	P,120	°C	No CC			
	lycerin			.50	-1.00	22.5		No Fume	S			60'		
Nitrog	uanidine Centrali			7,70 50	$\frac{\pm 1.00}{\pm 0.10}$	47.3		No. of Perforations				<u> </u>	_	
Cryoli		te).30	±0.10	0.28		NO. OI	Perio	rati	ons			
Total			 `	,, 50		100.0								
	Volatile	s).50	Max.		0.28							
Graphi	Graphite Glaze				Max. 0.07		7	<u> </u>						
			-											
			+-			_								
			MOS	B Relative	Rajaties	PROPE	LA	NT OIMEN	310113	(inch	68) r	Maen V	Winter in	~
	Lot Num	Tomy	• F	Relative Quickness	Helative Force	 	_		T -			et 14-10	Cimentia:	75 -
Ter						Les-11h (L)		Specification	0.233		2321	6.25 14		
						Diemater (D)			5.011	20	1048	6.25Ma	x 3.3	17
Standord				100.00%	100,00%				0.018	o lo.	0147		CETAG	
Romarks			-			Web Inne		·	0.017	5 0	0220	Pucked 1	0/5/22	2
<u> </u>						Veb Oute			0.014	5 0	0156	SampleJa	0/5//3 0/5//3	
	1							0.0172			1	Teat Firm	market makes and	- -)
						Non Ave	1	5 Max.*		8:	2	2014143 A		 -
<u> </u>	·		-			L.0	2	.10 to 2.50)Yt				5777	
<u> </u>	1					De	5	.0 to 15*			7.1	1	0/31/7	73

Fiber Drums per MIL-STD-652B.

Finite from MIL-STD-652B w/EO PA-56070-2 and EO PA-57189-2 shown for the control of the control

1.1

DISTRIBUTION LIST

No. o Copie		of Organ	ization
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	Developme ATTN: DRDM	ssile Research and ent Command II-R esenal, AL 35809
1	Director Defense Advanced Research Projects Agency ATTN: C. R. Lehner 1400 Wilson Boulevard Arlington, VA 22209	Developme ATTN: DRDT Warren, MI	k Automotive ent Command A-RWL 48090
1	Director Institute for Defense Analyses ATTN: Dr. H. Wolfhard 400 Army-Navy Drive Arlington, VA 22202	Research ATTN: Tech DRSM	ility Equipment & Development Command Doc Ctr, Bldg. 315 E-RZT r, VA 22060
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue	Readiness ATTN: DRSA Rock Island	nament Materiel s Command AR-LEP-L, Tech Lib l, IL 61299
1	Alexandria, VA 22333 Commander US Army Aviation Research and Development Command ATTN: DRSAV-E	Developme ATTN: DRDA Dover, NJ C	ament Research & nt Command R-LCS-T, Maj J. Houle 7801
1	12th and Spruce Streets St. Louis, MO 63166 Director US Army Air Mobility Research and Development Laboratory	l Commander US Army Whi Range ATTN: STEW WSMR, NM 88	
	Ames Research Center Moffett Field, CA 94035	Developme	ament Research & nt Command
1	Commander US Army Electronics Command ATTN: DRSEL-RD Ft. Monmouth, NJ 07703	DRDA	R-SC (Dr. D. Gyorog) R-SCT (Dr. T. Hung) R-SCA-DA (Mr. W. Squire) 7801

DISTRIBUTION LIST

No. of Copies		No. o Copie	
4	Commander US Army Armament Research & Development Command ATTN: DRDAR-LC, Dr. J. Fraz DRDAR-LCU, E. Barrier E. Werzel		Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-ATL Watertown, MA 02172
	DRDAR-LCA, Dr. G. Sharkoff Dover, NJ 07801	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib
1	Commander US Army Armament Research & Development Command ATTN: DRCPM-GCM-M Dover, NJ 07801	1	WSMR, NM 88002 Commander US Army Research Office ATTN: Tech Lib P. O. Box 12211
1	Project Manager, XM1 US Army Tank Automotive Development Command 2815 DeQuindre Road Warren, MI 48090	1	Research Triangle Park, NC 27706 Chief of Naval Research ATTN: Code 473 800 N. Quincy Street
1	Project Manager, M60 Tank US Army Tank Automotive Development Command 2815 DeQuindre Road Warren, MI 48090 Commander	1	Arlington, VA 22217 Commander US Naval Surface Weapons Center ATTN: Tech Lib Dahlgren, VA 22338
1	US Army Watervliet Arsenal ATTN: SARWV-RDD, P. Vottis Watervliet, NY 12189	1	Commander US Naval Research Laboratory ATTN: Code 6180 Washington, DC 20375
1	US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783	1	Commander US Naval Ordnance Station ATTN: Dr. A. Roberts Indian Head, MD 20640

DISTRIBUTION LIST

Aberdeen Proving Ground

Marine Corps Ln Ofc Dir, USAMSAA